18 research outputs found

    Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral Super-Resolution

    Get PDF
    The recent advancement of deep learning techniques has made great progress on hyperspectral image super-resolution (HSI-SR). Yet the development of unsupervised deep networks remains challenging for this task. To this end, we propose a novel coupled unmixing network with a cross-attention mechanism, CUCaNet for short, to enhance the spatial resolution of HSI by means of higher-spatial-resolution multispectral image (MSI). Inspired by coupled spectral unmixing, a two-stream convolutional autoencoder framework is taken as backbone to jointly decompose MS and HS data into a spectrally meaningful basis and corresponding coefficients. CUCaNet is capable of adaptively learning spectral and spatial response functions from HS-MS correspondences by enforcing reasonable consistency assumptions on the networks. Moreover, a cross-attention module is devised to yield more effective spatial-spectral information transfer in networks. Extensive experiments are conducted on three widely-used HS-MS datasets in comparison with state-of-the-art HSI-SR models, demonstrating the superiority of the CUCaNet in the HSI-SR application. Furthermore, the codes and datasets will be available at: https://github.com/danfenghong/ECCV2020_CUCaNet

    Impact of hybrid pansharpening approaches applied to hyperspectral images

    No full text
    Pansharpening techniques can be divided into component substitution (CS) and multi-resolution analysis (MRA) based methods. Generally, the CS methods result in fused images having high spatial quality but the fused images suffer from spectral distortions. On the other hand, images obtained using MRA techniques are not as sharp as CS methods but they are spectrally consistent. Both substitution and filtering approaches are considered adequate when applied to multi-spectral and PAN images, but have many drawbacks when the low-resolution image is a hyperspectral image. Based on these findings, the use of a hybrid approach, combining the better spatial information of CS and the more accurate spectral information of MRA techniques, may result in an improvement in terms of spectral quality, spatial sharpness as well as computational time

    Hyperspectral Pansharpening: A Review

    No full text
    Pansharpening aims at fusing a panchromatic image with a multispectral one, to generate an image with the high spatial resolution of the former and the high spectral resolution of the latter. In the last decade, many algorithms have been presented in the literatures for pansharpening using multispectral data. With the increasing availability of hyperspectral systems, these methods are now being adapted to hyperspectral images. In this work, we compare new pansharpening techniques designed for hyperspectral data with some of the state-of-the-art methods for multispectral pansharpening, which have been adapted for hyperspectral data. Eleven methods from different classes (component substitution, multiresolution analysis, hybrid, Bayesian and matrix factorization) are analyzed. These methods are applied to three datasets and their effectiveness and robustness are evaluated with widely used performance indicators. In addition, all the pansharpening techniques considered in this paper have been implemented in a MATLAB toolbox that is made available to the community

    Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral Super-Resolution

    Get PDF
    The recent advancement of deep learning techniques has made great progress on hyperspectral image super-resolution (HSI-SR). Yet the development of unsupervised deep networks remains challenging for this task. To this end, we propose a novel coupled unmixing network with a cross-attention mechanism, CUCaNet for short, to enhance the spatial resolution of HSI by means of higher-spatial-resolution multispectral image (MSI). Inspired by coupled spectral unmixing, a two-stream convolutional autoencoder framework is taken as backbone to jointly decompose MS and HS data into a spectrally meaningful basis and corresponding coefficients. CUCaNet is capable of adaptively learning spectral and spatial response functions from HS-MS correspondences by enforcing reasonable consistency assumptions on the networks. Moreover, a cross-attention module is devised to yield more effective spatial-spectral information transfer in networks. Extensive experiments are conducted on three widely-used HS-MS datasets in comparison with state-of-the-art HSI-SR models, demonstrating the superiority of the CUCaNet in the HSI-SR application. Furthermore, the codes and datasets are made available at: https://github.com/danfenghong/ECCV2020_CUCaNet

    Responsible science: Celebrating the 50-year legacy of Ball and Brown (1968) using a registration-based framework

    Get PDF
    © 2019 Elsevier B.V. This paper represents the intersection of three spheres of influence, relevant to the global research community interested in a more reliable understanding of capital market phenomena. First, as a timely context, we celebrate the 50-year legacy of an iconic event study of accounting information and the evolution of stock prices, namely Ball and Brown (1968). Second, we add our voice to the growing call for researchers to follow principles of “responsible science”. Third, using the Ball and Brown paper as the inspiration, we report on an experiment in which several teams of researchers follow a registration-based editorial process, which illustrates one fruitful avenue for fostering responsible research into the future
    corecore